先说本期问题,和前天我那个大乌龙有点关系

现在你有一张标准的四腿桌子,想要摆在客厅。可惜的是地板年久,早就凹凸不平。

问题:无论地板如何凹凸,你是否都能够把桌子的四脚着地?

如果觉得过于简单,那继续回答:能否在桌子四脚着地的同时,保证桌面是水平的?就是桌子上放满满一杯水,不会倾斜洒出来?

——————————————————————————————————————————————————————————————————————————————————————————
上一期的经典问题:用小白鼠试出那瓶毒药

好像大家基本都知道正确答案。

再简单说一下。给1000个试剂瓶用二进制编号:0000000001、0000000010、……、1100110111……因为2^10=1024>1000,所以全可用二进10位数。

然后给10只老鼠编号A、B、……、K。然后从所有末尾是1(如0000000001、0000000011、1100010001这样)的试剂瓶各取出一滴,合成一剂注射给老鼠A;从所有倒数第二位是1(如0000000010、0000000011这样)的试剂瓶各取出一滴,合成一剂注射给老鼠B;……从第一位是1的试剂瓶各取出一滴,合成一剂注射给老鼠K。

则老鼠KJI……CBA中,会有几只死掉。我们把死掉的那几个老鼠,所在位置记为1,其余记为0。KJI……CBA就变成一个二进制数,也就是毒药瓶的编号。

现在扩展一下,如果1000个试剂中有两瓶是致命毒药(为了避免麻烦,其它都算作水好了。)同时保留原来的时间限制(这一限制其实就是变相要求用原问题的思路——信息论——来解答),那么我们要以上面编号的方式找出这瓶毒药,那需要多少小白鼠呢?

使用信息论可以得出理论下界是19,但是似乎到目前还未有人构造出仅用19只小白鼠就能完成的实验方案。

依据目前国内最硬核的数学和算法类公共网络论坛数学研发论坛上网友的计算,外加计算机暴力检索,推出用27只小白鼠可解决1090瓶试剂的方案。但是目前还无人能够证明这就是实际上可达的最小值。有兴趣的朋友可以尝试一下,亲手解决一个目前世界上还无人能够解决的问题~

*之所以称研发论坛是目前国内仅存的数理硬核内容平台,一是有较高水平的社区成员,有版主是当年国内信息学竞赛的金牌得主,有版主是某个离散数学命题猜想最好结果的共同作者之一。论坛特点就是计算机+某些数学领域上的研发与交流,当然现在平台早已奄奄一息……但重点不在这里,重点是他们按照做博士论文的态度,推到了27,绝不是闭门造车自娱自乐,应该是在当前比较好的结果(不说最好是因为这也是好几年前的事了)。

至于说其它中文社区,注册使用者可能有院士,著名教授、天文台台长一类,问题是——他们不会在公共网络上做这种硬核研究啊。他们一般都是做做科普,讲讲科学典故轶事……

[ 广告 ]
赞一个 (22)

PREV :
NEXT :